Observatorio de Investigación y Desarrollo Tecnológico


  • OPEN BIOINFORMATICS JOURNAL//(VOL. 12)

    Volumen: 12, Numero: 1, Páginas: 45-49 pp.

    GENETIC EXPRESSION IN BIOLOGICAL SYSTEMS: A DIGITAL COMMUNICATION PERSPECTIVE

    Abstract

    The transcription and translation of Deoxyribonucleic Acid (DNA) involve the processing of genetic information (adenine, thymine, guanine, and cytosine), which can be interpreted as the processing of discrete signals. Additionally, the proper transmission and reception of proteins can be understood with typical theories of digital communication systems. Thus, concepts as routing, error control, and Shannonâ?TMs theorem may be the equivalence to determine a target organ, the maturation in the primary transcript molecule of Ribonucleic Acid (RNA) messenger, and the regulation of gene expression (that defines the development of multicellular organisms), respectively. Due to the high performance of transmitting information shown by typical digital communication systems, modeling the analogies between biological communication systems and digital communication systems as mentioned above may allow overcoming the challenges that biological systems face and having more efficient treatment of lethal diseases such as cancer.


    Keywords


    Biological communication, Digital communication, DNA, Genetic expression, Proteins, RNA


    Resumen

    No disponible


    Palabras Clave


    No disponible





    Acceder